Chapter 12: Satellite Motion

1. Figure A is of "Newton's Mountain," high enough so its top is above the drag of the atmosphere. The cannonball is fired and hits the ground as shown.

- a. Draw the path the cannonball might take if it were fired a little bit faster.
- b. Repeat for a speed that is greater still, but still less than 8 km/s.
- c. Then draw the orbital path of the cannonball if its speed were 8 km/s.
- d. What is the shape of the curve for a speed of 8 km/s?

Figure A

- e. What would be the shape of the orbital path if the cannonball were fired at a speed of about 9 km/s?
- 2. Figure B shows a satellite in circular orbit.
 - a. At each of the four positions draw a vector that represents the gravitational force exerted on the satellite.
 - b. Label the force vectors *F*.
 - c. Then draw at each position a vector to represent the velocity of the satellite at that position, and lable it V.
 - d. Are all four F vectors the same length? Why or why not?

Figure B

- e. What is the angle between your *F* and *V* vectors?
- f. Is there any component of F along V?
- g. What does this tell you about the work the force of gravity does on the satellite?
- h. Are all four *V* vectors the same length? Why or why not?

i.	Does the KE of the satellite in Figure B remain constant, or does it vary?	
k.	Does the PE of the satellite remain constant, or does it vary?	
. Fi	gure C shows a satellite in elliptical orbit.	
a.	Repeat the procedure you used for the circular orbit, drawing position, including proper labeling. Show equal magnitudes greater magnitudes with greater lengths, but don't bother magnitudes.	with equal lengths, and
b.	Are your F vectors all the same length? Why or why not?	
С	Is the angle between your F and V vectors the same everywhere, or does it vary?	
d.	Are there places where there is a component of F along V ?	
e.	Is work done on the satellite when there is a component of F along and in the same direction as V? If so, does this increase or decrease the KE of the satellite?	
f.	When there is a component of F along and opposite to the direction of V, does this increase or decrease the KE of the satellite?	
g.	Are your V vectors all the same length? Why or why not?	Figure C
h.	What can you say about the sum KE + PE along the orbit?	