Why Does Water Move?

Water Movement

• In and Out

- Water moves into cells
- Water moves out of cells
- Water moves into the roots of plants
- Water moves out of the roots of plants
- What are the forces that drive this movement?
- Is it possible to quantify this process?
- The good news is, "Yes!"
- It revolves around a concept called Water
 Potential

Water Potential

- Water Potential
 - Measures the tendency of water to move from one place to another.
 - Very useful in understanding water movement in plants, animals, and the soil
 - Abbreviated by the Greek letter ψ , psi (pronounced: "sigh")
- Key Ideas:
 - Water molecules move around randomly
 - When water is enclosed by a membrane the water molecules will hit the membrane, exerting pressure on it.
 - This pressure is known as water potential

Water Potential-The Details

- It is measured in units of **pressure**:
 - Bar (bar)
 - Pascal (Pa)
- Key Idea: Water always moves from an area of higher water potential to lower water potential
- Two things determine water potential (ψ)
 - Pressure Potential (Ψ_p)
 - Solute Potential (ψ_s)
- It can be expressed in this formula:
- Water Potential (ψ) = Pressure Potential (ψ_p) + Solute Potential (ψ_s)
- Let's take a look at these two factors in more detail, **pressure potential** and **solute potential...**

Pressure Potential (yp)

Water Potential (ψ) = Pressure Potential (ψ_p) + Solute Potential (ψ_s)

- **Pressure Potential** (ψ_p) : How is it created? What is it?
 - A plant cell is surrounded by a rigid cell wall
 - When water enters the plant cell, its volume increases and the living part of the cell presses on the cell wall
 - The cell wall is rigid so **pressure** builds up inside the cell.
 - This tends to stop more water from entering the cell
 - This pressure, exerted by a plant cell wall that limits further water uptake, is called **pressure potential** (ψ_p)
 - If water is **not** in a cell, but in an **open container** the **pressure potential** = 0 bar, since no pressure can be exerted because the container is opened (i.e. nothing can "push back").

Friday, October 31, 2014

Solute Potential (y_s)

- Solute Potential (ψ_s): How is it created? What is it?
 - The amount of solute in a solution effects the pressure.
 - **Pure water** has a **solute potential** = 0 bar, because there is no solute in the water.
 - Adding solute **lowers** the solute potential (i.e. it becomes more negative).
 - Therefore, solute potential is always zero or less than zero (a negative number). It is **never** positive.
- Let's put pressure potential (ψ_p) and solute potential (ψ_s) together and see how they influence water potential (ψ), and therefore the movement of water into or out of a container.

Water Potential Problem (ψ)

- How to analyze a situation in which two containers are separated by a semipermeable membrane:
- Left Side Container
 - Pressure Potential $(\psi_p) = 0$ bar
 - Why? Because it is an open container and no pressure potential can be created in an open container.
 - Solute Potential (ψ_s) = 0 bar
 - Why? Because it is pure water and pure water has no solutes and therefore there is no solute pressure.
- How to calculate the **water potential** in the **left side container**
- Water Potential (ψ) = Pressure Potential (ψ_p) + Solute Potential (ψ_s)
- Water Potential (ψ) = 0 bar 0 bar = 0 bar

Water Potential Problem (ψ)

- Right Side Container
 - Pressure Potential (ψ_p) = o bar
 - Why? It is an open container.
 - Solute Potential $(\psi_s) = -0.23$ bar
 - Why? Solutes have been added to the water creating a solute potential.
- Water Potential (ψ) = Pressure Potential (ψ_p) + Solute Potential (ψ_s)
- Water Potential (ψ) = 0 bar 0.23 bar = -0.23 bar
- Which way does the water move?
- Water always moves from an area of higher water potential to lower water potential
- Look at the number line. What number is larger, **o bar** or **-0.23 bar**?
 - **o bar!** (this is the single most confusing thing about water potential problems so beware-using a number line helps, if you get confused)
- Therefore, water will move from the **o bar** container to the **-0.23 bar** container (i.e. to the right).

Water Movement

- The key idea to remember is that water always moves from an area of higher water potential to lower water potential
- We use the **Water Potential Equation** to determine which container has the higher or lower water potential, which will help us determine the direction of water flow. Let the equation guide your thinking in these 3 scenarios.

Plant Cell in Distilled Water

- Let's look at what happens when a plant cell is placed in distilled water
 - Use the Water Potential Equation to guide your thinking
 - Water Potential (ψ) = Pressure Potential
 (ψ_p) + Solute Potential (ψ_s)
 - The Water Potential (ψ) in the distilled water will be 0 bar.
 - In Stage I, the plant cell has a Solute
 Potential (ψ_s) of 2 bar, and a Pressure
 Potential (ψ_p) of 0 bar (no pressure potential has built up yet)
 - Therefore the Water Potential (ψ) is 2 bar and water moves into the cell
 - In Stage 2, the plant cell has a Solute
 Potential (ψ_s) of 2 bar (no solutes have been added or taken away from the cell), and a
 Pressure Potential (ψ_p) of 2 bar because the pressure potential has built up.
 - Therefore the Water Potential (ψ) is 0 bar and there is no net movement of water into or out of the cell.

Solute Potential (y_s) - Details

- Let's get quantitative with Solute Potential (ψ_s)
- Solute Potential (ψ_s) = -iCRT
 - i = the number of particles the molecule will make in water
 - For NaCl this would be 2 because it ionizes into Na⁺ and Cl⁼
 - For glucose this would be 1 because glucose does not ionize
 - C = the molar concentration of the solution
 - R = pressure constant = 0.0831 liter bar/ mole K
 - T = temperature in degrees Kelvin ($273^\circ + ^\circ$ C) of the solution
- Solute Potential (ψ_s) Example Problem: The molar solution of a sugar solution in a open container has been determined to be 0.3 M. Calculate the solute potential at 27°C. Round your answer to the nearest hundredth. Once you find the solute potential calculate the water potential.
 - Answer: Solute Potential $(\psi_s) = -iCRT$
 - Solute Potential (ψ_s) = (1)(0.3 M)(0.0831 liter bar/ mole K)(300K) = -7.48 bar
- Water Potential (ψ) = Pressure Potential (ψ_p) + Solute Potential (ψ_s)
- Water Potential (ψ) = 0 bar 7.48 bar = 7.48 bar

Molarity-A Refresher

- In order to calculate Solute Potential (ψ_s) you may be expected to calculate the **molarity** of a solution. It may have been a while since you've calculated molarity so let's do a quick refresher.
- Molarity
 - A way of expressing concentration
 - Number of moles of solute dissolved in one liter of solution (moles/liter)
 - Formula for Molarity= Moles of solute/liters of solution
- Practice Problem: What is the molarity of a solution made by dissolving 2.5 g of NaCl in enough water to make 125 ml of solution?

Friday, October 31, 2014

Summary

- Water is key to all living things and therefore understanding water movement is important is important in biology.
- If you want to be able to determine which way water moves (into or out of a cell or a container) you can use the **water potential equation** to guide your thinking:
 - Water Potential (ψ) = Pressure Potential (ψ _p) + Solute Potential (ψ _s)
- Things to remember about this equation:
 - The units used are units of pressure and will most likely be **bar** for the AP Bio test.
 - The **pressure potential** of an open container is o bar.
 - The solute potential of pure water is o bar.
 - Solute potential will always be 0 bar (pure water) or negative (if there is a solute).
 - If you need to calculate the **solute potential** use this equation:
 - Solute Potential $(\psi_s) = -iCRT$
 - After you have done all your calculations use this idea to guide your thinking about water movement:
 - Water always moves from an area of higher water potential to lower water potential