Phylogenetic Tree Free Response Key

Graded By:	Staple this to the test when you are finished
Seat Number	
Period	
	Total Points

Place the appropriate letter (A,B,C, etc.) by each answer on the test as you find them. Place an "X" or a check by the letter on this sheet if it was answered correctly. Leave it blank if it was missed. Add the points and place the total points of the top.

Phylogeny is the evolutionary history of a species.

(a) The evolution of a species is dependent on changes in the genome of the species. Identify TWO mechanisms of genetic change, and explain how each affects genetic variation. (4 points maximum)

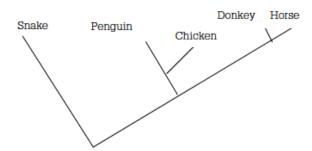
		Identification	Explanation	
		(1 point each; 2 points maximum)	(1 point each; 2 points maximum)	
	DNA	Mutation, e.g., point, frameshift, insertions,	Change in nucleotide sequence or	
Λ	(molecular)	deletions	amino acid sequence or protein	
A.			structure or gene expression, or change	
_			in phenotype	
B.		Duplication, e.g., gene, chromosome,	Gene "families," which then diverge by	
		genome, sympatric speciation	mutation; change in ploidy	
C.		Rearrangement, e.g., gene order, inversions,	Chromosome structure altered; change	
		chromosome fusion, transposons	in crossover frequency	
D	Cellular	Crossing over, independent assortment,	Increase gamete diversity	
ъ.		segregation, nondisjunction (meiosis)		
		Random fertilization (sexual reproduction)	Many possible gamete combinations	
	Population	Genetic drift or bottleneck or founder effects	Population allelic/gene frequencies	
		Gene flow (migration)	altered or gain or loss of alleles/genes	
		Geographic isolation or allopatric speciation		
		Nonrandom mating (sexual selection)	Reproductive fitness/differential success	
		Sympatric speciation		
		Natural selection		

(b) Based on the data in the table below, draw a phylogenetic tree that reflects the evolutionary relationships of the organisms based on the differences in their cytochrome c amino-acid sequences and explain the relationships of the organisms. Based on the data, identify which organism is most closely related to the chicken and explain your choice. (4 points maximum)

THE NUMBER OF AMINO ACID DIFFERENCES IN CYTOCHROME c AMONG VARIOUS ORGANISMS

	Horse	Donkey	Chicken	Penguin	Snake
Horse	0	1	11	13	21
Donkey		0	10	12	20
Chicken			0	3	18
Penguin				0	17
Snake					0

Phylogenetic tree: rooted trees with common ancestor, and with snakes, birds, mammals in correct relative order (1 point for tree)


____E.

____F.

___G.

___H.

Penguin Chicken Donkey Horse
Snake

- Cytochrome c: the more differences in amino acids of cytochrome c, the less closely related, OR fewer differences, more closely related. (1 point)
- Penguin is most closely related to chicken. (1 point)
- Three amino acids differing between penguin and chicken/penguin has fewest differences from chicken. (1 point)

(c) **Describe** TWO types of evidence—other than the comparison of proteins—that can be used to determine the phylogeny of organisms. **Discuss** one strength of each type of evidence you described. **(4 points maximum)**

	Description	Strength	
	(1 point per box; 2 points maximum)	(1 point each; 2 points maximum)	
	Fossil	Shows direct evidence of common ancestor, follow	
	Observe past organisms	evolution (changes over time) from common	
T		ancestor	
1.	Homology: morphology	Similarities in form(s) show common	
	Organismal structure/form	ancestry/DNA	
J.	Vestigial structures		
	Homology: embryology/development	Similarities in development show common	
K.	Morphology of embryos; changes in gene	ancestry/DNA	
	expression during development		
Ţ	Homology: reproduction	Similarities in reproduction strategies show	
L,	Comparison of reproductive strategies or life	common ancestry/DNA	
	cycles: cell division, gamete production,		
	gamete type, etc.		
	DNA sequence	Similarities in sequences show common ancestry	
	Comparison of DNA sequences in specific		
	genes; molecular homologies		
	Biogeography	Uses both past and present information to show	
	Analysis of organism distribution(s)	common ancestry/DNA	
	Direct observation/behavior	Similarities in behaviors indicate common	
	Watch organism in natural setting	ancestry/DNA	